Jotrin Electronics
Beschreibung Menge Insgesamt (USD) Betrieb
Einkaufswagen Produkte
Einkaufswagen Produkte : 0
Startseite > Technologie-Liste > Current Sensing Chip Resistor features 1 W power rating.

Current Sensing Chip Resistor features 1 W power rating.

Updatezeit: 2019-12-20 12:13:33

Current Sensing Chip Resistor features 1 W power rating.

MALVERN, Pa. — Vishay Precision Group, Inc. (NYSE: VPG) today announced that its Vishay Foil Resistors brand (VFR) has released a new ultra-high-precision Z-Foil surface-mount current sensing chip resistor that is the industry's first such device to combine a high power rating of 1 W at +70°C and low TCR of ±0.2 ppm/°C typical from -55°C to +125°C, +25°C ref. By dissipating up to 1 W in the 1625 package size, the VCS1625ZP allows designers to use a single device to measure larger currents than previously possible. For high-power applications, the device offers tight tolerances to ±0.2% (0.1% and 0.05% are available) and a four-terminal Kelvin configuration for increased accuracy.

The VCS1625ZP features a power coefficient (ΔR due to self-heating) of 5 ppm at rated power, a thermal stabilization time of <1 ns="" (nominal="" value="" achieved="" within="" 10="" ppm="" of="" steady="" state="" value),="" and="" a="" wide="" resistance="" range="" from="" 0.3 ω="" to="" 10="" ω.="" any="" resistance="" value="" within="" this="" range="" is="" available="" at="" any="" tolerance="" with="" no="" additional="" cost="" or="" lead="" time="" effect.="" the="" resistor="" offers="" a="" rise="" time="" of="" 1.0="" ns="" with="" effectively="" no="" ringing,="" short="" time="" overload="" of=""><0.005% (50="" ppm),="" current="" noise="" of="" 0.010="" µvrms/v="" of="" applied="" voltage=""><-40 db),="" and="" a="" voltage="" coefficient="" of=""><0.1>

Offering the utmost in electrostatic discharge (ESD) immunity, the device withstands ESD to at least 25 kV, for increased reliability, and offers a non-inductive (<0.08 µh),="" non-capacitive="" design.="" the="" bulk="" metal®="" foil="" technology="" of="" the="" vcs1625zp="" provides="" a="" significant="" reduction="" of="" the="" resistive="" component's="" sensitivity="" to="" ambient="" temperature="" variation="" (tcr)="" and="" to="" the="" self-heating="" effect="" caused="" by="" changing="" loads.="" this="" allows="" designers="" to="" guarantee="" a="" high="" degree="" of="" stability="" and="" accuracy="" in="" fixed-resistor="" applications.="" in="" addition,="" the="" resistor's="" design="" results="" in="" a="" very="" low="" thermal="" emf="" of="" 0.05="" µv/°c="" typical,="" which="" is="" critical="" in="" precision="">

The VCS1625ZP's load-life stability of 0.015% at +70°C for 2000 hours at rated power is an order of magnitude better than typical current sensing resistors. The device's improved stability makes it ideal for tightened-stability reference voltage and precision current sensing applications in forced-balance electronic scales, measurement instrumentation, bridge networks, motor controllers, and medical and test equipment. In addition, the resistor can be tested in accordance with EEE-INST-002 (MIL-PRF 55342) for military and space applications.

The all-welded construction of the VCS1625ZP is composed of a Bulk Metal Foil resistive element with plated copper terminations. The flat terminations make intimate contact with the resistive layer along the entire side of the resistive element, thereby minimizing temperature variations. In addition to the low thermal EMF compatibility of the device's metals, the uniformity and thermal efficiency of the design minimize the temperature differential across the resistor, thereby assuring low thermal EMF generation at the terminations. This further reduces the thermal EMF voltage, or "battery effect," exhibited by most current sensing or voltage reference resistors.

The device released today is characterized by extremely low excess noise when compared with other resistor technologies. Additionally, the current in adjacent current carrying paths runs in opposing directions, cancelling the parasitic inductance of these paths. Also, path-to-path capacitances are connected in series, which has the effect of minimizing the parasitic capacitance of the resistor. The low-inductance/capacitance device is characterized by non-measurable peak-to-peak signal distortions.

The VCS1625ZP is available with tin/lead or lead (Pb)-free gold or tin termination options, and with additional post-manufacturing operations (PMO) to extend the operating temperature from +150°C to well above +200°C.

Samples and production quantities of the VCS1625ZP are available now, with lead times of five working days for samples and eight weeks for standard orders. Pricing for U.S. delivery starts at $4.05.

Further information about the VCS1625ZP and other Vishay Foil Resistors products is available at Follow Vishay Foil Resistors at

About Vishay Precision Group
Vishay Precision Group (VPG) is an internationally recognized designer, manufacturer and marketer of: components based on its resistive foil technology; sensors; and sensor-based systems specializing in the growing markets of stress, force, weight, pressure, and current measurements. VPG is a market leader of Foil Technology Products, providing ongoing technology innovations in precision foil resistors and foil strain gages, which are the foundation of the Company's Force Sensors Products and its Weighing and Control Systems. The product portfolio consists of a variety of well-established brand names recognized for precision and quality in the marketplace. To learn more, visit VPG at

About VPG Foil Resistors
VPG Foil Resistors, a part of Vishay Precision Group (VPG), produces the most precise and stable resistors available. Distinguished by the premier brands Vishay Foil Resistors, Powertron, and Alpha Electronics, the VPG Foil Resistors portfolio includes discrete resistors and resistor networks in surface mount and through-hole (fixed-lead) configurations; customized chip resistor networks; precision trimming potentiometers; and discrete chips for use in hybrid circuits. These devices are used in applications requiring a high degree of precision and stability, such as in medical testing equipment, semiconductor equipment, precision measuring instruments, aerospace, and military applications. To learn more, visit

Bulk Metal is a registered trademark of Vishay Precision Group

Vorherige: Silicon Labs SNAP Enabled Programmable XCVR Development Tools

Nächste: Renesas Electronics Extends Battery Life for Tablets and Notebook PCs with High-Precision Battery Fuel Gauge IC

Ratings and Reviews